Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 961: 176172, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939988

RESUMO

Maternal infections during pregnancy may increase the risk of psychiatric disorders in offspring. We recently demonstrated that activation of peroxisome proliferator-activate receptor-α (PPARα), with the clinically available agonist fenofibrate (FEN), attenuates the neurodevelopmental disturbances induced by maternal immune activation (MIA) in rat offspring. We hypothesized that fenofibrate might reduce MIA-induced cytokine imbalance using a MIA model based on the viral mimetic polyriboinosinic-polyribocytidilic acid [poly (I:C)]. By using the Bio-Plex Multiplex-Immunoassay-System, we measured cytokine/chemokine/growth factor levels in maternal serum and in the fetal brain of rats treated with fenofibrate, at 6 and 24 h after poly (I:C). We found that MIA induced time-dependent changes in the levels of several cytokines/chemokines/colony-stimulating factors (CSFs). Specifically, the maternal serum of the poly (I:C)/control (CTRL) group showed increased levels of (i) proinflammatory chemokine macrophage inflammatory protein 1-alpha (MIP-1α), (ii) tumor necrosis factor-alpha (TNF-α), the monocyte chemoattractant protein-1 (MCP-1), the macrophage (M-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Conversely, in the fetal brain of the poly (I:C)/CTRL group, interleukin 12p70 and MIP-1α levels were lower than in vehicle (veh)/CTRL group. Notably, MIP-1α, TNF-α, keratinocyte derived chemokine (GRO/KC), GM-CSF, and M-CSF levels were lower in the poly (I:C)/FEN than in poly (I:C)/CTRL rats, suggesting the protective role of the PPARα agonist. PPARα might represent a therapeutic target to attenuate MIA-induced inflammation.


Assuntos
Fenofibrato , Esquizofrenia , Humanos , Feminino , Gravidez , Ratos , Animais , Citocinas , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Quimiocina CCL3 , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Fator Estimulador de Colônias de Macrófagos , PPAR alfa , Esquizofrenia/tratamento farmacológico , Fator de Necrose Tumoral alfa , Quimiocinas , Poli I-C/farmacologia
2.
Behav Brain Res ; 444: 114374, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36863461

RESUMO

Compelling data support altered dopamine (DA) and serotonin (5-HT) signaling in anorexia nervosa (AN). However, their exact role in the etiopathogenesis of AN has yet to be elucidated. Here, we evaluated the corticolimbic brain levels of DA and 5-HT in the induction and recovery phases of the activity-based anorexia (ABA) model of AN. We exposed female rats to the ABA paradigm and measured the levels of DA, 5-HT, the metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and the dopaminergic type 2 (D2) receptors density in feeding- and reward-implicated brain regions (i.e., cerebral cortex, Cx; prefrontal cortex, PFC; caudate putamen, CPu; nucleus accumbens, NAcc; amygdala, Amy; hypothalamus, Hyp; hippocampus, Hipp). DA levels were significantly increased in the Cx, PFC and NAcc, while 5-HT was significantly enhanced in the NAcc and Hipp of ABA rats. Following recovery, DA was still elevated in the NAcc, while 5-HT was increased in the Hyp of recovered ABA rats. DA and 5-HT turnover were impaired at both ABA induction and recovery. D2 receptors density was increased in the NAcc shell. These results provide further proof of the impairment of the dopaminergic and serotoninergic systems in the brain of ABA rats and support the knowledge of the involvement of these two important neurotransmitter systems in the development and progression of AN. Thus, providing new insights on the corticolimbic regions involved in the monoamine dysregulations in the ABA model of AN.


Assuntos
Dopamina , Serotonina , Ratos , Feminino , Animais , Dopamina/metabolismo , Serotonina/metabolismo , Encéfalo/metabolismo , Ácido Homovanílico , Núcleo Accumbens/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido Hidroxi-Indolacético/metabolismo
3.
Arch Pharm (Weinheim) ; 356(1): e2200432, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36328777

RESUMO

The development of novel µ-opioid receptor (MOR) antagonists is one of the main objectives of drug discovery and development. Based on a simplified version of the morphinan scaffold, 3-[3-(phenalkylamino)cyclohexyl]phenol analogs were designed, synthesized, and evaluated for their MOR antagonist activity in vitro and in silico. At the highest concentrations, the compounds decreased by 52% to 75% DAMGO-induced GTPγS stimulation, suggesting that they acted as antagonists. Moreover, Extra-Precision Glide and Generalized-Born Surface Area experiments provided useful information on the nature of the ligand-receptor interactions, indicating a peculiar combination of C-1 stereochemistry and N-substitutions as feasibly essential for MOR-ligand complex stability. Interestingly, compound 9 showed the best experimental binding affinity, the highest antagonist activity, and the finest MOR-ligand complex stability. In silico experiments also revealed that the most promising stereoisomer (1R, 3R, 5S) 9 retained 1,3-cis configuration with phenol ring equatorial oriented. Further studies are needed to better characterize the pharmacodynamics and pharmacokinetic properties of these compounds.


Assuntos
Naltrexona , Antagonistas de Entorpecentes , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/química , Ligantes , Fenóis/farmacologia , Relação Estrutura-Atividade , Receptores Opioides mu/química , Receptores Opioides mu/metabolismo
4.
Neuropharmacology ; 221: 109263, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36154843

RESUMO

Recent trends of opioid abuse and related fatalities have highlighted the critical role of Novel Synthetic Opioids (NSOs). We studied the µ-opioid-like properties of isotonitazene (ITZ), metonitazene (MTZ), and piperidylthiambutene (PTB) using different approaches. In vitro studies showed that ITZ and MTZ displayed a higher potency in both rat membrane homogenates (EC50:0.99 and 19.1 nM, respectively) and CHO-MOR (EC50:0.71 and 10.0 nM, respectively) than [D-Ala2, NMe-Phe4, Gly-ol5]-enkephalin (DAMGO), with no difference in maximal efficacy (Emax) between DAMGO and NSOs. ITZ also has higher affinity (Ki:0.06 and 0.05 nM) at the MOR than DAMGO in both systems, whilst MTZ has higher affinity in CHO-MOR (Ki=0.23 nM) and similar affinity in rat cerebral cortex (Ki = 0.22 nM). PTB showed lower affinity and potency than DAMGO. In vivo, ITZ displayed higher analgesic potency than fentanyl and morphine (ED50:0.00156, 0.00578, 2.35 mg/kg iv, respectively); ITZ (0.01 mg/kg iv) and MTZ (0.03 mg/kg iv) reduced behavioral activity and increased dialysate dopamine (DA) in the NAc shell (max. about 200% and 170% over basal value, respectively. Notably, ITZ elicited an increase in DA comparable to that of higher dose of morphine (1 mg/kg iv), but higher than the same dose of fentanyl (0.01 mg/kg iv). In silico, induced fit docking (IFD) and metadynamic simulations (MTD) showed that binding modes and structural changes at the receptor, ligand stability, and the overall energy score of NSOs were consistent with the results of the biological assays.


Assuntos
Analgésicos Opioides , Receptores Opioides mu , Animais , Ratos , Analgésicos Opioides/farmacologia , Receptores Opioides mu/agonistas , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Morfina/farmacologia , Fentanila
5.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202634

RESUMO

Novel psychoactive substances (NPS) are synthetic substances belonging to diverse groups, designed to mimic the effects of scheduled drugs, resulting in altered toxicity and potency. Up to now, information available on the pharmacology and toxicology of these new substances is very limited, posing a considerable challenge for prevention and treatment. The present in vitro study investigated the possible mechanisms of toxicity of two emerging NPS (i) 4'-methyl-alpha-pyrrolidinoexanophenone (3,4-MDPHP), a synthetic cathinone, and (ii) 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA), a phenethylamine. In addition, to apply our model to the class of synthetic opioids, we evaluated the toxicity of fentanyl, as a reference compound for this group of frequently abused substances. To this aim, the in vitro toxic effects of these three compounds were evaluated in dopaminergic-differentiated SH-SY5Y cells. Following 24 h of exposure, all compounds induced a loss of viability, and oxidative stress in a concentration-dependent manner. 2-Cl-4,5-MDMA activates apoptotic processes, while 3,4-MDPHP elicits cell death by necrosis. Fentanyl triggers cell death through both mechanisms. Increased expression levels of pro-apoptotic Bax and caspase 3 activity were observed following 2-Cl-4,5-MDMA and fentanyl, but not 3,4-MDPHP exposure, confirming the different modes of cell death.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Neurônios/efeitos dos fármacos , Psicotrópicos/efeitos adversos , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Psicotrópicos/química , Psicotrópicos/toxicidade , Relação Estrutura-Atividade
6.
Neuropharmacology ; 189: 108537, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798546

RESUMO

Allosteric modulators of G protein coupled receptors (GPCRs), including GABABRs (GABABRs), are promising therapeutic candidates. While several positive allosteric modulators (PAM) of GABABRs have been characterized, only recently the first negative allosteric modulator (NAM) has been described. In the present study, we report the characterization of COR758, which acts as GABABR NAM in rat cortical membranes and CHO cells stably expressing GABABRs (CHO-GABAB). COR758 failed to displace the antagonist [3H]CGP54626 from the orthosteric binding site of GABABRs showing that it acts through an allosteric binding site. Docking studies revealed a possible new allosteric binding site for COR758 in the intrahelical pocket of the GABAB1 monomer. COR758 inhibited basal and GABABR-stimulated O-(3-[35Sthio)-triphosphate ([35S]GTPγS) binding in brain membranes and blocked the enhancement of GABABR-stimulated [35S]GTPγS binding by the PAM GS39783. Bioluminescent resonance energy transfer (BRET) measurements in CHO-GABAB cells showed that COR758 inhibited G protein activation by GABA and altered GABABR subunit rearrangements. Additionally, the compound altered GABABR-mediated signaling such as baclofen-induced inhibition of cAMP production in transfected HEK293 cells, agonist-induced Ca2+ mobilization as well as baclofen and the ago-PAM CGP7930 induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in CHO-GABAB cells. COR758 also prevented baclofen-induced outward currents recorded from rat dopamine neurons, substantiating its property as a NAM for GABABRs. Altogether, these data indicate that COR758 inhibits G protein signaling by GABABRs, likely by interacting with an allosteric binding-site. Therefore, COR758 might serve as a scaffold to develop additional NAMs for therapeutic intervention.


Assuntos
Moduladores GABAérgicos/química , Moduladores GABAérgicos/farmacologia , Antagonistas de Receptores de GABA-B/química , Antagonistas de Receptores de GABA-B/farmacologia , Receptores de GABA-B/fisiologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Agonistas dos Receptores de GABA-B/química , Agonistas dos Receptores de GABA-B/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/farmacologia
7.
Eur J Pharm Sci ; 155: 105544, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32927068

RESUMO

We report an in vitro phase I metabolism study on COR659 (1), a 2-acylaminothiophene derivative able to suppress alcohol and chocolate self-administration in rats, likely via positive allosteric modulation of the GABAB receptor and antagonism/inverse agonism at the cannabinoid CB1 receptor. Given the identification of the methyl ester group at C-3 of the thiophene ring as a metabolic soft spot, we also report the chemical optimization project aimed to balance metabolic stability with in vitro and in vivo potency on a set of 3-substituted COR659 analogues. High performance liquid chromatography coupled to tandem and high resolution mass spectrometry was employed for the characterization of in vitro metabolism and in vivo pharmacokinetics of COR659 in rats. In vitro [35S]GTPγS binding assays on stimulated GABAB and CB1 receptors, in combination with alcohol and chocolate self-administration experiments in rats, were employed to assess the pharmacological profile of this novel set of analogues, using COR659 as reference compound. Eight metabolites of COR659 were discovered in liver microsomal incubates; two of them (M1, M2) were identified by comparison with synthetic reference standards. M2, oxidation product of methyl group at C-5 of the thiophene ring, was a major metabolite in vitro, but showed a low systemic exposure in vivo. M1, cleavage product of the methyl ester group at C-3, revealed in vitro an unusual mechanism of metabolism by a NADPH-dependent route and, in vivo, it maintained high and persistent levels in plasma, which could represent a potential pharmacokinetic and toxicological issue. In the novel set of COR659 analogues, those bearing branched alkyl substituents on the ester group, showed an improved in vitro metabolic stability (2-4), had an in vitro GABAB PAM (2-4) and/or CB1 partial agonist/antagonist profile (2-3) and maintained the ability to reduce alcohol (2-4) and/or chocolate (4) self-administration in rats. Both PK and PD data ruled out any involvement of metabolite M1 in the in vivo potency of COR659 and 4. The present results, therefore, highlight the importance to design and synthesize novel compounds endowed with the dual activity profile and devoid of metabolic liabilities.


Assuntos
Preparações Farmacêuticas , Receptores de GABA-B , Animais , Etanol , Ratos , Autoadministração , Ácido gama-Aminobutírico
8.
Int J Eat Disord ; 52(11): 1251-1262, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31456239

RESUMO

OBJECTIVE: Despite the growing knowledge on the functional relationship between an altered endocannabinoid (eCB) system and development of anorexia nervosa (AN), to date no studies have investigated the central eCB tone in the activity-based anorexia (ABA) model that reproduces key aspects of human AN. METHOD: We measured levels of two major eCBs, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), those of two eCB-related lipids, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and the cannabinoid type-1 receptor (CB1R) density in the brain of female ABA rats, focusing on areas involved in homeostatic and rewarding-related regulation of feeding behavior (i.e., prefrontal cortex, nucleus accumbens, caudato putamen, amygdala, hippocampus and hypothalamus). Analysis was carried out also at the end of recovery from the ABA condition. RESULTS: At the end of the ABA induction phase, 2-AG was significantly decreased in ABA rats in different brain areas but not in the caudato putamen. No changes were detected in AEA levels in any region, whereas the levels of OEA and PEA were decreased exclusively in the hippocampus and hypothalamus. Furthermore, CB1R density was decreased in the dentate gyrus of hippocampus and in the lateral hypothalamus. After recovery, both 2-AG levels and CB1R density were partially normalized in some areas. In contrast, AEA levels became markedly reduced in all the analyzed areas. DISCUSSION: These data demonstrate an altered brain eCB tone in ABA rats, further supporting the involvement of an impaired eCB system in AN pathophysiology that may contribute to the maintenance of some symptomatic aspects of the disease.


Assuntos
Anorexia Nervosa/induzido quimicamente , Encéfalo/efeitos dos fármacos , Endocanabinoides/efeitos adversos , Animais , Feminino , Humanos , Ratos , Ratos Sprague-Dawley
9.
Front Cell Neurosci ; 13: 158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114482

RESUMO

Excessive alcohol consumption is often linked to anxiety states and has a major relay center in the anterior part of bed nucleus of stria terminalis (BNST). We analyzed the impact of (i) genetic predisposition to high alcohol preference and consumption, and (ii) alcohol intake on anterior BNST, namely anterolateral (AL), anteromedial (AM), and anteroventral (lateral + medial subdivisions: AVl, AVm) subnuclei. We used two rat lines selectively bred for low- and high-alcohol preference and consumption, named Sardinian alcohol-non preferring (sNP) and -preferring (sP), respectively, the latter showing also inherent anxiety-related behaviors. We analyzed the modulation of calcitonin gene-related peptide (CGRP; exerting anxiogenic effects in BNST), neuropeptide Y (NPY; exerting mainly anxiolytic effects), and microglia activation (neuroinflammation marker, thought to increase anxiety). Calcitonin gene-related peptide-immunofluorescent fibers/terminals did not differ between alcohol-naive sP and sNP rats. Fiber/terminal NPY-immunofluorescent intensity was lower in BNST-AM and BNST-AVm of alcohol-naive sP rats. Activation of microglia (revealed by morphological analysis) was decreased in BNST-AM and increased in BNST-AVm of alcohol-naive sP rats. Prolonged (30 consecutive days), voluntary alcohol intake under the homecage 2-bottle "alcohol vs. water" regimen strongly increased CGRP intensity in BNST of sP rats in a subnucleus-specific manner: in BNST-AL, BNST-AVm, and BNST-AM. CGRP area sum, however, decreased in BNST-AM, without changes in other subnuclei. Alcohol consumption increased NPY expression, in a subnucleus-specific manner, in BNST-AL, BNST-AVl, and BNST-AVm. Alcohol consumption increased many size/shapes parameters in microglial cells, indicative of microglia de-activation. Finally, microglia density was increased in ventral anterior BNST (BNST-AVl, BNST-AVm) by alcohol consumption. In conclusion, genetic predisposition of sP rats to high alcohol intake could be in part mediated by anterior BNST subnuclei showing lower NPY expression and differential microglia activation. Alcohol intake in sP rats produced complex subnucleus-specific changes in BNST, affecting CGRP/NPY expression and microglia and leading to hypothesize that these changes might contribute to the anxiolytic effects of voluntarily consumed alcohol repeatedly observed in sP rats.

10.
Front Pharmacol ; 9: 327, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29674969

RESUMO

The present study was aimed to further characterize the pharmacological profile of N-[4-(trifluoromethyl) benzyl]-4-methoxybutyramide (GET73), a putative negative allosteric modulator (NAM) of metabotropic glutamate subtype 5 receptor (mGluR5) under development as a novel medication for the treatment of alcohol dependence. This aim has been accomplished by means of a series of in vitro functional assays. These assays include the measure of several down-stream signaling [intracellular Ca++ levels, inositol phosphate (IP) formation and CREB phosphorylation (pCREB)] which are generally affected by mGluR5 ligands. In particular, GET73 (0.1 nM-10 µM) was explored for its ability to displace the concentration-response curve of some mGluR5 agonists/probes (glutamate, L-quisqualate, CHPG) in different native preparations. GET73 produced a rightward shift of concentration-response curves of glutamate- and CHPG-induced intracellular Ca++ levels in primary cultures of rat cortical astrocytes. The compound also induced a rightward shift of concentration response curve of glutamate- and L-quisqualate-induced increase in IP turnover in rat hippocampus slices, along with a reduction of CHPG (10 mM)-induced increase in IP formation. Moreover, GET73 produced a rightward shift of concentration-response curve of glutamate-, CHPG- and L-quisqualate-induced pCREB levels in rat cerebral cortex neurons. Although the engagement of other targets cannot be definitively ruled out, these data support the view that GET73 acts as an mGluR5 NAM and support the significance of further investigating the possible mechanism of action of the compound.

11.
Front Neurosci ; 12: 40, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456490

RESUMO

Emerging evidence suggest an impaired endocannabinoid activity in the pathophysiology of binge eating disorder (BED). Herein, we investigated whether endocannabinoid tone could be modified as a consequence of dietary-induced binge eating in female rats. For this purpose, brain levels of the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), as well as two endocannabinoid-like lipids, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), were assessed in different brain areas involved in the hedonic feeding (i.e., prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and hypothalamus). The brain density of cannabinoid type-1 receptors (CB1) was also evaluated. Furthermore, we determined plasma levels of leptin, ghrelin, and corticosterone hormones, which are well-known to control the levels of endocannabioids and/or CB1 receptors in the brain. To induce binge eating behavior, rats were subject to an intermittent and limited access to a high fat diet (HFD) (margarine). Three experimental groups were used, all with ad libitum access to chow: control (CTRL), with no access to margarine; low restriction (LR), with 2 h margarine access 7 days/week; high restriction (HR), with 2 h margarine access 3 days/week. Bingeing was established when margarine intake in the HR group exceeded that of the LR group. Our results show that, compared to CTRL, AEA significantly decreased in the caudate putamen, amygdala, and hippocampus of HR group. In contrast, 2-AG significantly increased in the hippocampus while OEA decreased in the hypothalamus. Similar to the HR group, AEA and OEA decreased respectively in the amygdala and hypothalamus and 2-AG increased in the hippocampus of LR group. Moreover, LR group also had AEA decreased in the prefrontal cortex and increased in the nucleus accumbens. In both groups we found the same reduction of CB1 receptor density in the prefrontal cortex compared to CTRL. Also, LR and HR groups showed alterations in both ghrelin and corticosterone levels, while leptin remained unaltered. In conclusion, our findings show a modified endocannabinoid tone due to margarine exposure, in several brain areas that are known to influence the hedonic aspect of food. Even if not uniquely specific to binge eating, margarine-induced changes in endocannabinoid tone could contributes to the development and maintenance of this behavior.

12.
Neuropharmacology ; 133: 107-120, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29407764

RESUMO

Rimonabant is a potent and selective cannabinoid CB1 receptor antagonist widely used in animal and clinical studies. Besides its antagonistic properties, numerous studies have shown that, at micromolar concentrations rimonabant behaves as an inverse agonist at CB1 receptors. The mechanism underpinning this activity is unclear. Here we show that micromolar concentrations of rimonabant inhibited Gαi/o-type G proteins, resulting in a receptor-independent block of G protein signaling. Accordingly, rimonabant decreased basal and agonist stimulated [35S]GTPγS binding to cortical membranes of CB1- and GABAB-receptor KO mice and Chinese Hamster Ovary (CHO) cell membranes stably transfected with GABAB or D2 dopamine receptors. The structural analog of rimonabant, AM251, decreased basal and baclofen-stimulated GTPγS binding to rat cortical and CHO cell membranes expressing GABAB receptors. Rimonabant prevented G protein-mediated GABAB and D2 dopamine receptor signaling to adenylyl cyclase in Human Embryonic Kidney 293 cells and to G protein-coupled inwardly rectifying K+ channels (GIRK) in midbrain dopamine neurons of CB1 KO mice. Rimonabant suppressed GIRK gating induced by GTPγS in CHO cells transfected with GIRK, consistent with a receptor-independent action. Bioluminescent resonance energy transfer (BRET) measurements in living CHO cells showed that, in presence or absence of co-expressed GABAB receptors, rimonabant stabilized the heterotrimeric Gαi/o-protein complex and prevented conformational rearrangements induced by GABAB receptor activation. Rimonabant failed to inhibit Gαs-mediated signaling, supporting its specificity for Gαi/o-type G proteins. The inhibition of Gαi/o protein provides a new site of rimonabant action that may help to understand its pharmacological and toxicological effects occurring at high concentrations.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células CHO , Cricetulus , Agonistas dos Receptores de GABA-B/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/farmacocinética , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Ratos , Receptor CB1 de Canabinoide/genética , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Rimonabanto , Transdução de Sinais/efeitos dos fármacos
13.
Neurosci Lett ; 638: 211-217, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28007642

RESUMO

Recent lines of experimental evidence have indicated that saikosaponin A (SSA) - a bioactive ingredient of the medicinal plant, Bupleurum falcatum L. - suppressed alcohol, morphine, and cocaine self-administration in rats. The present paper was designed to assess whether the protective properties of SSA on addiction-related behaviors generalize to a hyperpalatable food such as a chocolate-flavored beverage (CFB). To this end, rats were initially trained to lever-respond for CFB [5% (w/v) Nesquik® powder in water] under fixed ratio (FR) 10 (FR10) schedule of reinforcement. Once lever-responding reached stable levels, rats were treated acutely with two different dose ranges of SSA (0, 0.25, 0.5, and 1mg/kg; 0, 1, 2.5, and 5mg/kg; i.p.) and exposed to the FR10 and progressive ratio (PR) schedules of reinforcement in four independent experiments. The effect of acutely administered SSA (0, 0.25, 0.5, and 1mg/kg; i.p.) on cue-induced reinstatement of seeking behavior for CFB was also assessed. Under the FR and PR schedules of reinforcement, treatment with SSA diminished lever-responding for CFB, amount of self-administered CFB, and breakpoint for CFB. All variables were virtually completely suppressed after treatment with 5mg/kg SSA. Treatment with SSA also suppressed reinstatement of CFB-seeking behavior. No dose of SSA altered rat motor-performance, evaluated exposing all rats to an inverted screen test immediately after the self-administration session. These results demonstrate that acute treatment with SSA potently suppressed several addictive-like behaviors motivated by highly hedonic nourishment. These data extend to a highly rewarding natural stimulus the anti-addictive properties of SSA recently disclosed in rats self-administering alcohol, morphine, and cocaine.


Assuntos
Bupleurum/química , Chocolate , Comportamento Alimentar/efeitos dos fármacos , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , Animais , Bebidas , Masculino , Motivação/efeitos dos fármacos , Ácido Oleanólico/farmacologia , Ratos Wistar , Reforço Psicológico , Autoadministração
14.
Eur J Pharmacol ; 791: 115-123, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27578262

RESUMO

Positive allosteric modulators (PAMs) of the GABAB receptor have emerged as a novel approach to the pharmacological manipulation of the GABAB receptor, enhancing the effects of receptor agonists with few side effects. Here, we identified N-cyclohexyl-4-methoxy-6-(4-(trifluoromethyl)phenyl)pyrimidin-2-amine (SSD114) as a new compound with activity as a GABAB PAM in in vitro and in vivo assays. SSD114 potentiated GABA-stimulated [35S]GTPγS binding to native GABAB receptors, whereas it had no effect when used alone. Its effect on GTPγS stimulation was suppressed when GABA-induced activation was blocked with CGP54626, a competitive antagonist of the GABAB receptor. SSD114 failed to potentiate WIN55,212,2-, morphine- and quinpirole-induced [35S]GTPγS binding to cortical and striatal membranes, respectively, indicating that it is a selective GABAB PAM. Increasing SSD114 fixed concentrations induced a leftward shift of the GABA concentration-response curve, enhancing the potency of GABA rather than its efficacy. SSD114 concentration-response curves in the presence of fixed concentrations of GABA (1, 10, and 20µM) revealed a potentiating effect on GABA-stimulated binding of [35S]GTPγS to rat cortical membranes, with EC50 values in the low micromolar range. Bioluminescence resonance energy transfer (BRET) experiments in Chinese Hamster Ovary (CHO)-cells expressing GABAB receptors showed that SSD114 potentiates the GABA inhibition of adenylyl-cyclase mediated by GABAB receptors. Our compound is also effective in vivo potentiating baclofen-induced sedation/hypnosis in mice, with no effect when tested alone. These findings indicate that SSD114, a molecule with a different chemical structure compared to known GABAB PAMs, is a novel GABAB PAM with potential usefulness in the GABAB-receptor research field.


Assuntos
Cicloexilaminas/farmacologia , Pirimidinas/farmacologia , Receptores de GABA-B/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Baclofeno/farmacologia , Células CHO , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Córtex Cerebral/citologia , Cricetinae , Cricetulus , Cicloexilaminas/metabolismo , Masculino , Camundongos , Pirimidinas/metabolismo , Ratos , Receptores de GABA-B/química , Reflexo de Endireitamento/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
15.
Neuroscience ; 332: 130-9, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27365174

RESUMO

α2 adrenoreceptors (α2-ARs) play a key role in the control of noradrenaline and dopamine release in the medial prefrontal cortex (mPFC). Here, using UV-laser microdissection-based quantitative mRNA expression in individual neurons we show that in hTH-GFP rats, a transgenic line exhibiting intense and specific fluorescence in dopaminergic (DA) neurons, α2A adrenoreceptor (α2A-AR) mRNA is expressed at high and low levels in DA cells in the ventral tegmental area (VTA) and substantia nigra compacta (SNc), respectively. Confocal microscopy fluorescence immunohistochemistry revealed that α2A-AR immunoreactivity colocalized with tyrosine hydroxylase (TH) in nearly all DA cells in the VTA and SNc, both in hTH-GFP rats and their wild-type Sprague-Dawley (SD) counterparts. α2A-AR immunoreactivity was also found in DA axonal projections to the mPFC and dorsal caudate in the hTH-GFP and in the anterogradely labeled DA axonal projections from VTA to mPFC in SD rats. Importantly, the α2A-AR immunoreactivity localized in the DA cells of VTA and in their fibers in the mPFC was much higher than that in DA cells of SNc and their fibers in dorsal caudate, respectively. The finding that α2A-ARs are highly expressed in the cell bodies and axons of mesoprefrontal dopaminergic neurons provides a morphological basis to the vast functional evidence that somatodendritic and nerve-terminal α2A-AR receptors control dopaminergic activity and dopamine release in the prefrontal cortex. This finding raises the question whether α2A-ARs might function as autoreceptors in the mesoprefrontal dopaminergic neurons, replacing the lack of D2 autoreceptors.


Assuntos
Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Substância Negra/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Axônios/metabolismo , Corpo Estriado/citologia , Neurônios Dopaminérgicos/citologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/citologia , Vias Neurais/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Ratos Transgênicos , Substância Negra/citologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/citologia
16.
Neuropharmacology ; 105: 630-638, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26686391

RESUMO

In order to investigate the in vivo dopamine (DA) stimulant properties of selected 3rd generation Spice/K2 cannabinoids, BB-22, 5F-PB-22, 5F-AKB-48 and STS-135, their in vitro affinity and agonist potency at native rat and mice CB1 receptors was studied. The compounds bind with high affinity to CB1 receptors in rat cerebral cortex homogenates and stimulate CB1-induced [(35)S]GTPγS binding with high potency and efficacy. BB-22 and 5F-PB-22 showed the lowest Ki of binding to CB1 receptors (0.11 and 0.13 nM), i.e., 30 and 26 times lower respectively than that of JWH-018 (3.38 nM), and a potency (EC50, 2.9 and 3.7 nM, respectively) and efficacy (Emax, 217% and 203%, respectively) as CB1 agonists higher than JWH-018 (EC50, 20.2 nM; Emax, 163%). 5F-AKB-48 and STS-135 had higher Ki for CB1 binding, higher EC50 and lower Emax as CB1 agonists than BB-22 and 5F-PB-22 but still comparatively more favourable than JWH-018. The agonist properties of all the compounds were abolished or drastically reduced by the CB1 antagonist/inverse agonist AM251 (0.1 µM). No activation of G-protein was observed in CB1-KO mice. BB-22 (0.003-0.01 mg/kg i.v.) increased dialysate DA in the accumbens shell but not in the core or in the medial prefrontal cortex, with a bell shaped dose-response curve and an effect at 0.01 mg/kg and a biphasic time-course. Systemic AM251 (1.0 mg/kg i.p.) completely prevented the stimulant effect of BB-22 on dialysate DA in the NAc shell. All the other compounds increased dialysate DA in the NAc shell at doses consistent with their in vitro affinity for CB1 receptors (5F-PB-22, 0.01 mg/kg; 5F-AKB-48, 0.1 mg/kg; STS-135, 0.15 mg/kg i.v.). 3rd generation cannabinoids can be even more potent and super-high CB1 receptor agonists compared to JWH-018. Future research will try to establish if these properties can explain the high toxicity and lethality associated with these compounds.


Assuntos
Adamantano/análogos & derivados , Agonistas de Receptores de Canabinoides/farmacologia , Dopaminérgicos/farmacologia , Indazóis/farmacologia , Indóis/farmacologia , Quinolinas/farmacologia , Adamantano/farmacologia , Animais , Antagonistas de Receptores de Canabinoides/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estrutura Molecular , Naftalenos/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Piperidinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Pirazóis/farmacologia , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo
17.
J Psychiatr Res ; 56: 1-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24882701

RESUMO

The termination of serotonin (5-hydroxytryptamine, 5-HT) neurotransmission is regulated by its uptake by the 5-HT transporter (5-HTT), as well as its degradation by monoamine oxidase (MAO)-A. MAO-A deficiency results in a wide set of behavioral alterations, including perseverative behaviors and social deficits. These anomalies are likely related to 5-HTergic homeostatic imbalances; however, the role of 5-HTT in these abnormalities remains unclear. To ascertain the role of 5-HTT in the behavioral anomalies associated to MAO-A deficiency, we tested the behavioral effects of its blocker fluoxetine on perseverative, social and aggressive behaviors in transgenic animals with hypomorphic or null-allele MAO-A mutations. Acute treatment with the 5-HTT blocker fluoxetine (10 mg/kg, i.p.) reduced aggressive behavior in MAO-A knockout (KO) mice and social deficits in hypomorphic MAO-A(Neo) mice. Furthermore, this treatment also reduced perseverative responses (including marble burying and water mist-induced grooming) in both MAO-A mutant genotypes. Both MAO-A mutant lines displayed significant reductions in 5-HTT expression across the prefrontal cortex, amygdala and striatum, as quantified by immunohistochemical detection; however, the down-regulation of 5-HTT in MAO-A(Neo) mice was more pervasive and widespread than in their KO counterparts, possibly indicating a greater ability of the hypomorphic line to enact compensatory mechanisms with respect to 5-HT homeostasis. Collectively, these findings suggest that the behavioral deficits associated with low MAO-A activity may reflect developmental alterations of 5-HTT within 5-HTergic neurons. Furthermore, the translational implications of our results highlight 5-HT reuptake inhibition as an interesting approach for the control of aggressive outbursts in MAO-A deficient individuals.


Assuntos
Agressão/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Fluoxetina/farmacologia , Monoaminoxidase/deficiência , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Serotonina/metabolismo , Agressão/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Asseio Animal/efeitos dos fármacos , Asseio Animal/fisiologia , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Monoaminoxidase/genética , Comportamento Social , Comportamento Estereotipado/efeitos dos fármacos , Comportamento Estereotipado/fisiologia
18.
PLoS One ; 9(5): e98079, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24844285

RESUMO

Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4 × 10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (-19% and -28% for 1 mg/kg pre- and post-treated animals; -25% and -21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (-50%) and by pre-treatment with 3 mg/kg Δ9-THC (-53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (-34% and -47% for 1 mg/kg pre- and post-treated animals; -37% and -29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our results indicate that Δ9-THC reduces METH-induced brain damage via inhibition of nNOS expression and astrocyte activation through CB1-dependent and independent mechanisms, respectively.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Dronabinol/farmacologia , Metanfetamina/toxicidade , Fármacos Neuroprotetores/farmacologia , Animais , Temperatura Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos
19.
J Neurosci ; 33(14): 6203-11, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23554501

RESUMO

Ventral tegmental area dopamine neurons control reward-driven learning, and their dysregulation can lead to psychiatric disorders. Tonic and phasic activity of these dopaminergic neurons depends on cholinergic tone and activation of nicotinic acetylcholine receptors (nAChRs), particularly those containing the ß2 subunit (ß2*-nAChRs). Nuclear peroxisome proliferator-activated receptors type-α (PPARα) tonically regulate ß2*-nAChRs and thereby control dopamine neuron firing activity. However, it is unknown how and when PPARα endogenous ligands are synthesized by dopamine cells. Using ex vivo and in vivo electrophysiological techniques combined with biochemical and behavioral analysis, we show that activation of α7-nAChRs increases in the rat VTA both the tyrosine phosphorylation of the ß2 subunit of nAChRs and the levels of two PPARα endogenous ligands in a Ca(2+)-dependent manner. Accordingly, in vivo production of endogenous PPARα ligands, triggered by α7-nAChR activation, blocks in rats nicotine-induced increased firing activity of dopamine neurons and displays antidepressant-like properties. These data demonstrate that endogenous PPARα ligands are effectors of α7-nAChRs and that their neuromodulatory properties depend on phosphorylation of ß2*-nAChRs on VTA dopamine cells. This reveals an autoinhibitory mechanism aimed at reducing dopamine cell overexcitation engaged during hypercholinergic drive. Our results unveil important physiological functions of nAChR/PPARα signaling in dopamine neurons and how behavioral output can change after modifications of this signaling pathway. Overall, the present study suggests PPARα as new therapeutic targets for disorders associated with unbalanced dopamine-acetylcholine systems.


Assuntos
Colinérgicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , PPAR alfa/metabolismo , Receptores Nicotínicos/metabolismo , Área Tegmentar Ventral/citologia , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Animais Recém-Nascidos , Benzamidas/farmacologia , Compostos Bicíclicos com Pontes/farmacologia , Carbamatos/farmacologia , Di-Hidro-beta-Eritroidina/farmacologia , Neurônios Dopaminérgicos/fisiologia , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Etanolaminas/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Ligantes , Masculino , PPAR alfa/agonistas , Técnicas de Patch-Clamp , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Natação/psicologia , Tirosina 3-Mono-Oxigenase/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
20.
Psychoneuroendocrinology ; 38(2): 281-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22776423

RESUMO

The enzyme 5α-reductase (5αR) catalyzes the conversion of testosterone and other Δ(4)-3-ketosteroids into their 5α-reduced metabolites. Of the five members of the 5αR family, the type 2 enzyme (5αR2) plays a key role in androgen metabolism, and is abundantly distributed in the urogenital system. Although 5αR2 has been reported to be highly expressed in the brain during early developmental stages, little is currently known on its anatomical and cellular distribution in the adult brain. Thus, the present study was designed to determine the detailed localization of 5αR2 in the adult rat brain, using a highly specific polyclonal antibody against this isoform. Parasagittal and coronal sections revealed 5αR2 immunoreactivity throughout most brain regions, with strong immunolabeling in the layers III and VI of the prefrontal and somatosensory cortex, olfactory bulb, thalamic nuclei, CA3 field of hippocampus, basolateral amygdala and Purkinje cell layer of cerebellum. Lower 5αR2 levels were detected in the hypothalamus and midbrain. Moreover, double labeling fluorescence with confocal laser scanning microscopy (CLSM) revealed that 5αR2 is localized in neurons, but not in glial cells. Specifically, the enzyme was documented in the pyramidal neurons of the cortex by CLSM analysis of simultaneous Golgi-Cox and immunofluorescent staining. Finally, low levels of 5αR2 expression were identified in GABAergic cells across the cortex, hippocampus and striatum. These findings show that, in the adult brain, 5αR2 is distributed in critical regions for behavioral regulation, suggesting that the functional role of this isoform is present throughout the entire lifespan of the individual.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Encéfalo/enzimologia , Imuno-Histoquímica/métodos , Animais , Neurônios GABAérgicos/enzimologia , Masculino , Imagem Molecular/métodos , Neurônios/enzimologia , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...